Протокол ipv6
Содержание:
- Технология IPv6
- Предпосылки к IPv6
- Внедрение IPv6. Что его сдерживает?
- 4 миллиарда — это совсем немного
- IPv6 — это IPv4 с более длинными адресами
- Метки потоков
- Автоконфигурированные адреса для протокола IPv6 для Windows Server 2008 и Windows Vista
- Что такое IPv6
- Добавление шлюзов по-умолчанию
- Наиболее очевидные отличия между IPv6 и IPv4
- А зачем нам IPv6?
- Интеграция ADPREPADPREP Integration
- [править] Тем временем
- Почему затягивается полный переход на IPv6?
- Общие положение IPv6
- Что дает IPv6?
Технология IPv6
Рис. 1. Трансляция протоколов
При разработке IPv6 была предусмотрена возможность плавного перехода к новой версии, когда довольно значительное время будут сосуществовать островки Интернета, работающие по протоколу IPv6, и остальная часть Интернета, работающая по протоколу IPv4. Существует несколько подходов к организации взаимодействия узлов, использующих разные стеки TCP/IP.
Трансляция протоколов. Трансляция протоколов реализуется шлюзами, которые устанавливаются на границах сетей, использующих разные версии протокола IP. Согласование двух версий протокола IP происходит путем преобразования пакетов IPv4 в IPv6, и наоборот. Процесс преобразования включает, в частности, отображение адресов сетей и узлов, различным образом трактуемых в этих протоколах. Для упрощения преобразования адресов между версиями разработчики IPv6 предлагают использовать специальный подтип IРv6-адреса — IРv6-совместимый IРv6-адрес, который в младших 4-х байтах переносит IРv6-адрес, а в старших 12 байтах содержит нули . Это позволяет получать IPv4-адрес из IPv6-адреса простым отбрасыванием старших байтов.
Для решения обратной задачи — передачи пакетов IPv4 через части Интернета, работающие по протоколу IРv6, — предназначен IРv6-отображенный IРv6-адрес. Этот тип адреса также содержит в 4-х младших байтах IРv6-адрес, в старших 10-ти байтах — нули, а в 5-м и 6-м байтах IРv6-адреса — единицы, которые показывают, что узел поддерживает только версию 4 протокола IP.
Рис. 2. Обратная транасляция
Мультиплексирование стеков протоколов. Мультиплексирование стеков протоколов означает установку на взаимодействующих хостах сети обеих версий протокола IP. Обе версии стека протоколов должны быть развернуты также на разделяющих эти хосты маршрутизаторах. В том случае, когда IPv6-xoct отправляет сообщение IРv6-хосту, он использует стек IPv6 если тот же хост взаимодействует с IPv4-xoctom — стек IPv4. Маршрутизатор с установленными на нем двумя стеками называется маршрутизатором IPv4/IPv6, он способен обрабатывать трафики разных версий независимо друг от друга.
Инкапсуляция, или туннелирование. Инкапсуляция — это еще один метод решения задачи согласования сетей, использующих разные версии протокола IP. Инкапсуляция может быть применена, когда две сети одной версии протокола, например IPv4, необходимо соединить через транзитную сеть, работающие по другой версии, например IPv6 (рис 3) При этом пакеты IPv4 помещаются в пограничных устройствах (на рисунке роль согласующих устройств исполняют маршрутизаторы) в пакеты IPv6 и переносятся через «туннель», проложенный в IPv6-ceть. Такой способ имеет недостаток заключающийся в том, что узлы IPv4-ceTeft не имеют возможности взаимодействовать с узлами транзитной IPv6-cera. Аналогичным образом метод туннелирования может использоваться для переноса пакетов IPv6 через сеть маршрутизаторов IPv4.
Рис. 3. Инкапсуляция
Переход от версии IPv4 к версии IPv6 только начинается. Сегодня уже существуют фрагменты Интернета, в которых маршрутизаторы поддерживают обе версии протокола. Эти фрагменты объединяются между собой через Интернет, образуя так называемую магистраль Вопе.
Предпосылки к IPv6
Основной протокол, по которому в Интернете передадаются данные, называется IP (Internet Protocol). Всякие HTTP, ICQ и сервисы работают поверх него (с TCP или UDP в промежутке). IP умеет упаковывать данные в пакеты и передавать их между компьютерами. Понятно, желающим обменяться данными нужно как-то друг друга идентифицировать. Для этой цели используются IP-адреса.
А вот с адресами и начинаются проблемы. IP был придуман в 80-х годах XX века, когда никто и не предполагал, что доступ в Интернет через какие-то пятнадцать лет будет не то, что у каждой уважающей себя фирмы, а вовсе у каждого школьника. Поэтому адреса сделали длиной в четыре байта (от 0.0.0.0 до 255.255.255.255). Их 2^32 = 4294967296, казалось, что хватит всем. Прямо как 640 килобайт.
Но это еще не самый большой просчет. На ранних этапах развития сети адреса можно было получать не сколько тебе реально надо, а только блоками по 16777216, 65536 или 256 адресов. Если тебе надо 500 адресов, бери сразу 65536. Если надо 66000, бери 16 миллионов. Явно не самый эффективный расход адресного пространства.
Есть и еще один прикол: сеть 224.0.0.0/4 (268435456 адресов) выделили для многоадресной рассылки (через нее, в частности, работает IPTV), а адреса после нее зарезервировали для использования в будущем. Многие разработчики сетевого оборудования поставили аппаратный фильтр на эти зарезервированные адреса, и теперь если разрешить их использование, часть исторической инфраструктуры не сможет с ними работать.
Но до какого-то момента это все не имело значения, поскольку Интернет был только у военных и в университетах.
Когда число пользователей сети начало стремительно возрастать, стало ясно, что адресов не так уж и много. В первую очередь отказались от дурацкой классовой адресации (той самой выдачи блоками фиксированного размера) и сделали возможным выдавать адреса в минимально нужном количестве.
Потом и это перестало помогать, тогда подумали, что во имя спасения сети можно отказаться от уникальности адреса каждой машины и выдавать по одному уникальному адресу на сеть, чтобы все машины сети ходили в Интернет через него. Так появился NAT (Network Address Translation), который подменяет адрес источника у соединений вовне сети на адрес маршрутизатора. Для сетей за такими маршрутизаторами выделили всем теперь известные сети 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16.
Но это все временные меры, которые только помогли бы продержаться до внедрения нового протокола с большим адресным пространством.
Внедрение IPv6. Что его сдерживает?
Спустя 8 лет после официального запуска протокол IPv6 постепенно внедряется в сети операторов связи, а также интернет-сервис-провайдеров в разных странах, сосуществуя со своим предшественником — протоколом IPv4.
Активнее всего новой системой адресации пользуются операторы мобильной связи и интернет-провайдеры. Например, по данным отраслевой группы World IPv6 Launch, у T-Mobile USA по протоколу IPv6 проходит почти 95% объема трафика, у Sprint Wireless — 89%. Есть поклонники прогресса и в других странах — индийская Reliance Jio Infocomm (90%), бразильская Claro Brasil (66%). Из российских операторов выше всех в рейтинге, на 83 месте, МТС с 55%.
В страновых рейтингах проникновения IPv6 по оценке Google лидируют Бельгия (52,3%), Германия (50%), Индия (47,8%), Греция (47,6%). У США всего 40,7%, меньше чем, например, у Вьетнама (43,1%). России похвастаться нечем (5,6%). Впрочем, у Китая и вовсе 0,34%.
Динамика доступности IPv6 для пользователей Google
Более консервативными оказались крупные веб-сайты. На сегодняшний день, как сообщает Internet Society, чуть менее 30% веб-сайтов из первой тысячи рейтинга Alexa доступны через IPv6. Еще медленнее на новый протокол переводят свои сайты организации. И пока очень немногие компании используют IPv6 в собственной ИТ-инфраструктуре. Объясняется это довольно просто: перевод корпоративной сети на новый протокол — это сложный, дорогой и долгий процесс. А технология NAT, как уже говорилось, продлила время жизни IPv4.
4 миллиарда — это совсем немного
Послуживший интернету верой и правдой протокол IPv4, разработанный в 1981 г., имеет 32-битную схему адресации, достаточную для поддержки 4,3 млрд сетевых устройств. Когда-то казалось, что этого количества хватит всем и навсегда, так же, как и пресловутых «640 килобайт памяти».
Однако уже в начале 90-х годов, по мере роста количества сайтов и пользователей интернета, стало ясно, что 4 млрд закончатся уже в обозримом будущем. Тогда же началась разработка нового протокола IPv6. С появлением в 1999 г. концепции интернета вещей эти опасения многократно усилились. И если в 2000 г. предполагалось, что «мощностей» IPv4 хватит на пару десятков лет, то уже в 2005-м высказывалось мнение, что не более, чем на 5.
Второй прогноз оказался ближе к истине: «запасы» больших блоков адресов у региональных регистраторов стали заканчиваться в 2011 г. А в ноябре 2019 г. RIPE NCC, интернет-регистратор, занимающийся выделением интернет-ресурсов и координацией деятельности по поддержке глобального функционирования интернета в Европе и на Ближнем Востоке, объявил о том, что распределил последний блок адресов IPv4 и далее будет работать только с возвращаемыми адресами.
На какое-то время жизнь IPv4 продлила технология трансляции сетевых адресов (Network Address Translation, NAT). Она позволяет преобразовывать частные IP-адреса в общедоступные сетевые и за счет этого «экономить» IPv4-адреса, позволяя использовать один общедоступный IP-адрес множеству компьютеров с частными IP-адресами.
Для этого в корпоративной сети устанавливается маршрутизатор или межсетевой экран, поддерживающий технологию NAT и имеющий общедоступный IP-адрес. На него попадают пакеты, которые отправляются с частных сетевых адресов, за пределы корпоративной сети. Устройство NAT отмечает адрес источника и назначения пакета в таблице трансляции, заменяет его на свой общедоступный IP-адрес и отправляет по назначению. А принимая ответный пакет, NAT преобразует адрес назначения в частный IP-адрес компьютера, который инициировал обмен данными.
IPv6 — это IPv4 с более длинными адресами
В сетевой безопасности критично недооценивать масштаб рисков. Одно из самых распространённых заблуждений заключается в том, что IPv6 — это IPv4 с более длинными адресами. Это не так. IPv6 сильно отличается от IPv4 как в отдельных вещах, так и в совокупности. Иногда наилучшее решение в организации IPv4 будет наихудшим выбором для IPv6.
Head of Development/Team Lead
ZenSupplies, Удалённо, От 250 000 до 300 000 ₽
tproger.ru
Вакансии на tproger.ru
Адресация — одна из областей, где разница между IPv4 и IPv6 особенно очевидна. Адреса IPv6 не только длиннее, но и отличаются друг от друга по атрибутам, типам, структуре и способам их использования. Например:
- адреса IPv6 имеют новые атрибуты: длину, область действия и время жизни;
- для интерфейсов IPv6 нормально иметь несколько адресов;
- адреса IPv6 могут меняться со временем;
- мультикаст играет ключевую роль в основных протоколах IPv6;
- существует множество способов назначения идентификаторов интерфейса (нижние 64 бита);
- использование IPv6-адресов и управление ими сильно отличается от IPv4;
- глобальные публичные адреса — это нормально.
И это только то, что касается адресации. IPv6 имеет много других отличий, затрагивающих как существующие в IPv4 особенности, так и в совершенно новые протоколы и функции. Все они имеют влияют на безопасность протокола.
Чтобы понять масштабы уязвимости IPv6, ознакомьтесь с рисунком ниже. Он не предназначен для сравнения безопасности IPv4 и IPv6, но иллюстрирует много новых областей для рассмотрения.
Метки потоков
Введение в протоколе IPv6 поля «Метка потока» позволяет значительно упростить процедуру маршрутизации однородного потока пакетов. Поток — это последовательность пакетов, посылаемых отправителем определённому адресату. При этом предполагается, что все пакеты данного потока должны быть подвергнуты определённой обработке. Характер данной обработки задаётся дополнительными заголовками.
Допускается существование нескольких потоков между отправителем и получателем. Метка потока присваивается узлом-отправителем путём генерации псевдослучайного 20-битного числа. Все пакеты одного потока должны иметь одинаковые заголовки, обрабатываемые маршрутизатором.
При получении первого пакета с меткой потока маршрутизатор анализирует дополнительные заголовки, выполняет предписанные этими заголовками функции и запоминает результаты обработки (адрес следующего узла, опции заголовка переходов, перемещение адресов в заголовке маршрутизации и т. д.) в локальном кэше. Ключом для такой записи является комбинация адреса источника и метки потока. Последующие пакеты с той же комбинацией адреса источника и метки потока обрабатываются с учётом информации кэша без детального анализа всех полей заголовка.
Время жизни записи в кэше составляет не более 6 секунд, даже если пакеты этого потока продолжают поступать. При обнулении записи в кэше и получении следующего пакета потока пакет обрабатывается в обычном режиме, и для него происходит новое формирование записи в кэше. Следует отметить, что указанное время жизни потока может быть явно определено узлом отправителем с помощью протокола управления или опций заголовка переходов и может превышать 6 секунд.
Обеспечение безопасности в протоколе IPv6 осуществляется с использованием протокола IPsec, поддержка которого является обязательной для данной версии протокола.
Автоконфигурированные адреса для протокола IPv6 для Windows Server 2008 и Windows Vista
По умолчанию для IPv6-протокола для Windows Server 2008 и Windows Vista автоматически настроены следующие адреса IPv6:
- Локальные адреса, использующие случайные производные интерфейсные идентификаторы, назначаются всем интерфейсам локальной сети (LAN).
- Если он включен в качестве префикса локального сайта в опции «Информация о префиксах» в рекламе маршрутизатора с установленным в 1 Автономным флагом, локальный адрес сайта, используя случайный идентификатор интерфейса, назначается интерфейсу LAN, который получил рекламу маршрутизатора.
- Если он включен в качестве глобального или уникального локального префикса в опцию «Информация о префиксах» в рекламе маршрутизатора с установленным значением 1 для автономного флага, глобальный или уникальный локальный адрес с использованием случайного производного постоянного идентификатора интерфейса назначается интерфейсу LAN, который получил рекламу маршрутизатора.
- Если он включен в качестве глобального или уникального локального префикса в опцию «Информация о префиксах» в рекламе маршрутизатора с установленным в 1 Автономным флагом, временному глобальному или уникальному локальному адресу с использованием временного идентификатора временного интерфейса назначается интерфейс LAN, который получил маршрутизатор Реклама. Это поведение по умолчанию для Windows Vista. Окно Server 2008 не создает временные адреса по умолчанию. Вы можете включить временные адреса с помощью интерфейса netsh ipv6, установленного для обеспечения конфиденциальности.
- Если флаг M установлен в 1 в принятом рекламном сообщении маршрутизатора, для IP-адреса с поддержкой протокола IPv6 на основе области DHCPv6 для подсети назначается интерфейс LAN, который получил сообщение ответа DHCPv6.
- Если общедоступные IPv4-адреса назначены на интерфейсы компьютера, и нет глобальных или уникальных локальных префиксов автоконфигурации, полученных в рекламных сообщениях маршрутизатора, соответствующие 6to4-адреса с использованием идентификаторов интерфейса 6to4 назначаются интерфейсу туннелирования 6to4. 6to4 описывается в RFC 3056.
- Для компьютеров под управлением Windows Vista для всех адресов IPv4, назначенных для интерфейсов компьютера, соответствующие локальные локальные адреса с использованием идентификаторов интерфейса внутрисайтового автоматического туннельного адресата (ISATAP) (::0:5EFE:w.x.y.z or ::200:5EFE:w.x.y.z) назначаются интерфейсу туннелирования ISATAP. ISATAP описан в RFC 4214.
- Если он включен как глобальный, уникальный локальный или локально-локальный префикс в информации о префиксах рекламы маршрутизатора, полученной на интерфейсе ISATAP, глобальном, уникальном локальном или локальном адресе сайта с использованием идентификатора интерфейса ISATAP, соответствующего IPv4 адрес, который является лучшим источником для доступа к маршрутизатору ISATAP, назначается интерфейсу ISATAP. Адрес петлевой петли (::1) присваивается псевдошуму Loopback 1.
Что такое IPv6
IPv6 (Интернет-протокол версии 6) также называемый IPng (Internet Protocol next generation – Интернет-протокол следующего поколения) – это обновлённая версия интернет-протокола (IP) созданная с учётом стандартов Инженерного Совета Интернета для замены текущей версии IPv4.
IPv6 является наследником IPv4, и был задуман как революционное обновление существующей доныне версии Интернет Протокола, и в настоящее время сосуществует с более старым IPv4. Новый IPv6 создан чтобы обеспечить интернету устойчивый и надёжный рост, касающийся как номера наличных хостов, так и общего количества передаваемого траффика, поддерживая 2^128 адресов – намного больше устаревшего протокола IPv4.
IPv6 часто называют «следующей генерацией» стандартов Интернета, который постоянно развивается с середины 1990х до сегодняшнего дня. Он был рождён как ответ на тревоги о том, что количество требуемых IP-адресов скоро превысит граничные возможности сети Интернет. После того, как мы узнали что это такое IPv6, рассмотрим дополнения существующие в ней.
Преимущества IPv6 по сравнению с IPv4
Вместе с увеличением количества возможных адресов, существуют и другие важные технологические изменения в IPv6 по сравнению с IPv4:
- Нет необходимости в NAT (трансляции сетевых адресов);
- Авто-конфигурация;
- Больше нет коллизий приватных адресов;
- Упрощённая, более эффективная, маршрутизация;
- Лучшая многоадресная маршрутизация;
- Более простой формат заголовка;
- Подтверждённое качество обслуживания (QoS), также называемое «маркировкой потока»;
- Встроенная аутентификация и поддержка конфиденциальности.
При этом, в IPv6 существуют несколько вариантов адресов:
- Unicast (одноадресные) – используется в сервисах персонального характера, направляется из одного, определённого, источника к одному IP-aдресу
- Anycast (групповые) – позволяет посылать данные ко всем абонентам определённой ip-сети;
- Multicast (многоадресные) – данные передаются для неограниченного количества абонентов.
Добавление шлюзов по-умолчанию
Чтобы настроить шлюз по-умолчанию, вы можете использовать команду и добавить маршрут по умолчанию (::/0) со следующим синтаксисом:
netsh interface ipv6 add route ::/0 InterfaceNameorIndex IPv6Address] Length] MetricValue] no|yes|immortal] Time|infinite] Time|infinite] active|persistent]
- prefix Префикс адреса IPv6 и длина префикса для маршрута по умолчанию. Для других маршрутов вы можете заменить ::/0 на AddressPrefix / PrefixLength.
- interface Имя интерфейса или интерфейса или индекс интерфейса.
- nexthop Если префикс предназначен для адресатов, которые не находятся в локальной ссылке, адрес IPv6 следующего шага соседнего маршрутизатора.
- siteprefixlength Если префикс предназначен для адресатов по локальной ссылке, вы можете указать длину префикса для префикса адреса, назначенного сайту, к которому принадлежит этот узел IPv6. metric Значение, определяющее предпочтение использования маршрута. Более низкие значения являются предпочтительными.
- publish. Как маршрутизатор IPv6, этот параметр указывает, будет ли префикс подсети, соответствующий маршруту, включенным в рекламные объявления маршрутизатора, и являются ли сроки жизни для префиксов бесконечными (бессмертная опция).
- validlifetime Время жизни, по которому маршрут действителен. Значения времени могут быть выражены в днях, часах, минутах и секундах (например, 1d2h3m4s). Значение по умолчанию бесконечно.
- preferredlifetime Время жизни, по которому маршрут является предпочтительным. Значения времени могут быть выражены в днях, часах, минутах и секундах. Значение по умолчанию бесконечно.
- store Как сохранить маршрут, активный (маршрут удален при перезапуске системы) или постоянный (маршрут остается после перезапуска), который является значением по умолчанию.
Например, чтобы добавить маршрут по умолчанию, который использует интерфейс с именем «Подключение по локальной сети» со адресом следующего перехода fe80::2aa:ff:fe9a:21b8, вы используете следующую команду:
netsh interface ipv6 add route ::/0 "Local Area Connection" fe80::2aa:ff:fe9a:21b8
Наиболее очевидные отличия между IPv6 и IPv4
Давайте их перечислим:
• в IPv6-адресе 128 бит представляет собой целых восемь 16-битных 16-теричных блоков, которые разделены двоеточиями. Пример: 2dfc:0:0:0:0217:cbff:fe8c:0. Если же говорить про адрес IPv4, то традиционной формой его записи является запись в виде 4-х десятичных чисел от 0 до 255, которые разделены точками, а через дробь обозначается длина маски подсети. Пример: 192.168.0.0/16;
• в IPv4-адресе для мультивещания зарезервирована подсеть 224.0.0.0/4. Что касается IPv6, то тут для данных целей используется адресное встроенное пространство FF00::/8;
• для передачи широковещательных адресов IPv4 применяет широковещательные пакеты, а IPv6 — многоадресные группы;
• в качестве неопределённого адреса протокол IP четвёртой версии применяет 0.0.0.0, а при создании обратной связи (loopback) — 127.0.0.1. Что касается IPv6, то тут применяются :: и ::1 соответственно;
• для трафика в IPv4 задействуются глобальные уникальные публичные адреса, а также «частные» адреса, в IPv6 — локальные адреса FD00::/8 и глобальные уникальные юникаст-адреса.
А зачем нам IPv6?
В первой половине 2011 года Европейским отделением RIPE NCC был продан последний свободный блок из 16 миллионов уже привычных нам IP-адресов 4-й версии — подсеть 185.0.0.0/8. То есть фактически глобальный пуль IP-адресов стал равен 0. Чем это грозит рядовому пользователю?! Начать думаю стоит с того, что сейчас сетевой модуль — LAN, Wi-Fi или 3G — присутствует практически в каждом компьютере, ноутбуке, планшете и смартфоне, число сетевых устройств в мире увеличивается в геометрической прогрессии. Даже если учитывать что подавляющее большинство этих устройств выходят в сеть Интернет через абонентские устройства доступа — роутеры, модемы, оптические терминалы используя технологию NAT либо прокси-серверы, то всё равно такой рост сетевых устройств приведет к тому, что у провайдеров закончатся (а у некоторых уже закончились) свободные IP-адреса. Что делать провайдерам? А провайдеры начнут применять различные ухищрения типа PG-NAT (NAT на уровне провайдера) с выдачей абонентам серых IP-адресов из внутренней локальной сети и т.п. И чем дальше — тем больше абонентов будут сидеть за NAT провайдера. После этого у абонентов могут начаться проблемы со скоростью (особенно через torrent-сети а силу их особенностей), с онлайн-играми и т.п.
Как ни крути, выход один — переход на новый протокол IPv6. Конечно сразу одним махом перейти не получится при любом раскладе, но чем быстрее миграция начнется, тем быстрее проблема будет решаться, ведь по мере перехода будут освобождаться IPv4 адреса.
Казалось бы — всё это проблемы провайдеров, а рядовому пользователю в чем польза?
Конечно до конца ещё не известно в каком виде пользователю будет предоставляться IPv6 — в виде адреса или в виде целой подсети адресов (а подсетей в новом протоколе огромное количество). Но если будут предоставляться сразу подсети, то надобность в NAT’е на абонентских устройствах отпадет в принципе и пользователям не нужно будет в дальнейшем мучиться с пробросом портов на домашних роутерах — у всех компьютеров в домашней сети будут белые внешние адреса.
Второй значительных плюс — увеличение скорости в файлообменных сетях, особенно через Torrent. Правда поддержка IPv6 обязательна и со стороны файлообменных серверов и трекеров.
Третий значительные плюс — закрепление статически за пользователем определенной подсети адресов, которые не будут меняться динамически каждый раз при переподключении к провайдеру.
Интеграция ADPREPADPREP Integration
Расширение схемы леса Active Directory и подготовка домена теперь интегрированы в процесс настройки контроллера домена.Active Directory forest schema extension and domain preparation now integrate into the domain controller configuration process. При повышении роли нового контроллера домена в существующем лесу процесс определяет состояние обновления и этапы расширения схемы и подготовки домена происходят автоматически.If you promote a new domain controller into an existing forest, the process detects upgrade status and the schema extension and domain preparation phases occur automatically. Пользователь, устанавливающий первый контроллер домена Windows Server 2012, по-прежнему должен входить в группы «Администраторы предприятия» и «Администраторы схемы» или предоставить альтернативные действительные учетные данные.The user installing the first Windows Server 2012 domain controller must still be an Enterprise Admin and Schema Admin or provide valid alternate credentials.
Средство Adprep.exe остается на DVD-диске для подготовки отдельных лесов и доменов.Adprep.exe remains on the DVD for separate forest and domain preparation. Версия средства, включенная в Windows Server 2012, имеет обратную совместимость с Windows Server 2008 x64 и Windows Server 2008 R2.The version of the tool included with Windows Server 2012 is backwards compatible to Windows Server 2008 x64 and Windows Server 2008 R2. Adprep.exe также поддерживает удаленные команды forestprep и domainprep, так же как средства настройки контроллера домена на основе ADDSDeployment.Adprep.exe also supports remote forestprep and domainprep, just like the ADDSDeployment-based domain controller configuration tools.
Информацию о средстве Adprep и подготовке леса в предыдущих операционных системах см. в разделе Работа с программой Adprep.exe (Windows Server 2008 R2).For information about Adprep and previous operating system forest preparation, see Running Adprep (Windows Server 2008 R2).
[править] Тем временем
Никаких костылей надолго не хватит
3 февраля 2011 года IANA выдала последние семь (/8) блоков IPv4 региональным распределяющим организациям. Внезапно, как снег в конце декабря для ЖКХ, не правда ли? Это означает, что после того, как у региональных распределителей закончатся полученные ими пачки, новых адресов брать будет неоткуда. По оценкам, озвученным во время пресс-конференции, на это уйдёт около девяти месяцев. После этого начнётся уплотнение, отбор IP адресов у хомячков, костылестроение и прочие ужасы.
14 сентября 2012 года RIPE объявил, что IPv4 начали выдаваться из последнего блока /8. И выдаются только новым лирам, да и то жалкие /22 и только после алокации в IPv6. Что сразу резко увеличило число новых лиров, ибо юрлиц много, а чиcло IPv4 ограничено.
4 ноября 2012 года крупнейший Российский барыга IPv4 адресов — компания Лидертелеком, специализирующегося на раздаче PA сетей ленивым провайдерам, не желавшим морочиться с ВЭД и самостоятельным общением с RIPE, объявила о смене бизнес модели на нетрадиционную и повышении цен на IPv4 адреса для уже выданных сетей в 200 раз. Теперь один IPv4 стоит провайдеру 30 рублей в месяц. А учитывая навар, налог и резервы — тебе, анонимус, один такой ip адрес будет стоить 100 рублей в месяц. Вот вам и дешевые впски. Хотя, не пора ли покупать VPSки только на IPv6?
10 января 2013 года горячо любимый нищебродами продавец немецких бытовых тазиков под видом серверов — Hetzner — поднял цены на уже выданные IPv4 до 1 евро в месяц. А ведь некоторые понабирали в старые добрые времена бесплатные /23 на двадцатидевятиевровый как бы сервер.
Почему затягивается полный переход на IPv6?
Причина у этого банально проста: высокая стоимость. Чтобы обновить все серверы, маршрутизаторы и коммутаторы, которые всё это время работали лишь с IPv4, потребуется много времени и денег.
Также здесь нельзя не упомянуть и повсеместную практику провайдеров назначать пользователям динамический адрес, меняющийся при подключении к другой сети. В таком случае после отключения от интернета устройства освобождают адрес, в результате чего он становится доступен другим устройствам (по сути вы не владеете адресом, а лишь арендуете адрес).
Всё это в целом замедляет долгожданный и повсеместный переход с IPv4 на IPv6.
Но это не значит, что IPv6 плохо распространяется. Сегодня он применяется параллельно с IPv4. По данным Google, порядка 14 % его пользователей уже используют IPv6. А если верить заявлением американского провайдера Comcast, в 2018 году в США около половины пользователей уже перешли на IPv6.
Общие положение IPv6
Похоже, что IPv6 в Linux уже вышел на рабочий уровень и обрел стабильность. Переход на новый протокол продлится долго, но в целом Linux уже готова к этому процессу. Как видно из настоящей статьи, IPv6 имеет ряд преимуществ перед IPv4, включая:
- расширенное адресное пространство, которое избавляет:
- от грозящей IPv4 нехватки адресов и необходимости NAT;
- простоту конфигурации IP-адресов без проверки состояния, благодаря которой не требуется настраивать отдельные хосты;
- простой способ перенумерования;
- упрощенный (по сравнению с IPv4) заголовок IP-пакетов;
- отсутствие фрагментации на маршрутизаторах (свойственной IPv4) — она производится только на хостах, использующих обнаружение PMTU.
Имеются, конечно, у IPv6 на Linux и некоторые недостатки, не упомянутые в настоящей статье. До сих пор, скажем, здесь не реализован LVS (Linux Virtual Server — виртуальный сервер Linux). Зато перевести приложения на IPv6 сравнительно просто. В целом же переход на IPv6 выглядит неизбежным, так как новый протокол дает по сравнению с IPv4 много серьезных преимуществ. Вот только этот процесс потребует времени, так что нам еще предстоит сталкиваться с сетями, где одни машины поддерживают исключительно IPv4, другие — только IPv6, третьи — оба эти протокола. Сегодня, к счастью, уже имеется масса технологий туннелирования, помогающая справляться с такими сетями. Так что даже несмотря на некоторые сложности переходного периода, протокол нового поколения IPv6 обязательно выйдет в сеть и в конце концов значительно улучшит ее.
Что дает IPv6?
Документы, определяющие новый интернет-протокол организация Internet Engineering Task Force выпустила еще в середине 90-х, а официальный запуск работы протокола IPv6 на постоянной основе состоялся 6 июня 2012 года. Многие компании начали переходить на него и раньше, например Google — с 2008 г.
Номер «6» протокол получил потому, что имя IPv5 зарезервировали за экспериментальным протоколом реального времени, который так и не вышел «в серию». Но и не пропал совсем — многие заложенные в нем концепции можно найти в протоколе MLPS.
Благодаря 128-битной схеме адресации, заложенной в IPv6, количество доступных в нем сетевых адресов составляет 2 в 128 степени. Столь обширное адресное пространство делает ненужным применение NAT (адресов хватит всем) и упрощает маршрутизацию данных. Например, маршрутизаторы больше не должны фрагментировать пакеты, появилась возможность пересылки больших пакетов, размером до 4 Гбайт. Из IP-заголовка исключена контрольная сумма и т. д., поэтому несмотря на больший по сравнению с IPv4 размер адреса IPv6 (16 байтов вместо 4), заголовок пакета удлинился всего лишь вдвое: с 20 до 40 байт.